A recent article by the New York Times poses an interesting solution to global warming called alkalinity enhancement. Carbon dioxide in the atmosphere warms the earth through the greenhouse effect. In the presence of water, carbon dioxide can dissolve forming stable bicarbonate and removing its contribution to atmospheric heating. It is through this process that one-third of the 1.7 trillion tons of carbon dioxide that humans have pumped into the atmosphere since the industrial age has been naturally removed by the oceans. Alkalinity enhancement involves adding limestone, magnesium oxide or other alkaline substances to rivers, oceans, or other bodies of water to enhance the water’s ability to “soak up” CO2. Could alkalinity enhancement be the solution to the global warming crisis?
Alkalinity enhancement has already been used for purposes other than carbon capture and with definitive success. Acid rain resulting from industrial pollution in the 1970s and ‘80s poisoned lakes and streams around the world, severely harming fish populations. Some of the hardest hit countries such as Norway, Sweden and Canada began adding limestone to their waterways to restore the pH balance. The project worked and enabled fish populations to recover.
Proving the effectiveness of alkalinity enhancement on a larger scale does however present significant challenges. While studies have shown that alkalinity enhancement does work in relatively small bodies of water, it is much harder to prove the same techniques work in the vast oceans where the added alkalinity becomes quickly diluted and/or forever lost in the watery depths. Oceanographer, Jaime Palter at the University of Rhode Island states that “the biggest barrier to ocean alkalinity enhancement is proving that it works.” Despite the massive hurdle, researchers like Dr. Atamanchuk from Dalhousie University remain optimistic.
Beyond questions of effectiveness, many experts and environmental groups raise serious concerns about the potential ecological impacts of alkalinity enhancement on marine life. Marine ecologist Lisa Levin cautions that certain types of ocean geoengineering, if tried at scale, are bound to affect deep-sea life. Others share concern over the type of chemicals and their concentrations when being released into the oceans. Sodium hydroxide, for example, is caustic at high concentrations but common soaps and cleaners at lower concentrations. Dr. Subhas, researcher at the Woods Hole Oceanographic Institution, proposes to use lye or 100% sodium hydroxide, but dilute it in freshwater before unloading into the ocean to limit ecological consequences. Marine biologist James Kerry disagrees with the use of sodium hydroxide, comparing the release of 50% sodium hydroxide into the ocean to a “chemical spillage”.
Sources
Plumer, Brad, and Raymond Zhong. “They’ve Got a Plan to Fight Global Warming. It Could Alter the Oceans.” The New York Times, The New York Times, 23 Sept. 2024, www.nytimes.com/2024/09/23/climate/oceans-rivers-carbon-removal.html.
The topic of your chosen article is both timely and relates to chemistry in important ways. It is from a widely read general interest source. Your summary is clear and succinct and describes the chemical connection well. Your title picks up the key words: carbon, climate and oceans. A word like absorption or sequestration might have been useful. The graphic is effective and a reasonable choice. You pick up on quotes from real scientists (and give their institutional connections) discussing the key aspects of the topic. The sentence in the middle of the last paragraph should say something like "..but is common in.." (missing words).
ReplyDeleteOverall an effective and interesting post.